Homogeneous geodesics in homogeneous Finsler spaces
نویسنده
چکیده
In this paper, we study homogeneous geodesics in homogeneous Finsler spaces. We first give a simple criterion that characterizes geodesic vectors. We show that the geodesics on a Lie group, relative to a bi-invariant Finsler metric, are the cosets of the one-parameter subgroups. The existence of infinitely many homogeneous geodesics on compact semi-simple Lie group is established. We introduce the notion of naturally reductive homogeneous Finsler space. As a special case, we study homogeneous geodesics in homogeneous Randers spaces. Finally, we study some curvature properties of homogeneous geodesics. In particular, we prove that the S-curvature vanishes along the homogeneous geodesics.
منابع مشابه
Homogeneous geodesics of left invariant Finsler metrics
In this paper, we study the set of homogeneous geodesics of a leftinvariant Finsler metric on Lie groups. We first give a simple criterion that characterizes geodesic vectors. As an application, we study some geometric properties of bi-invariant Finsler metrics on Lie groups. In particular a necessary and sufficient condition that left-invariant Randers metrics are of Berwald type is given. Fin...
متن کاملOn 5-dimensional 2-step homogeneous randers nilmanifolds of Douglas type
In this paper we first obtain the non-Riemannian Randers metrics of Douglas type on two-step homogeneous nilmanifolds of dimension five. Then we explicitly give the flag curvature formulae and the $S$-curvature formulae for the Randers metrics of Douglas type on these spaces. Moreover, we prove that the only simply connected five-dimensional two-step homogeneous Randers nilmanifolds of D...
متن کاملReversible Homogeneous Finsler Metrics with Positive Flag Curvature
In this work, we continue with the classification for positively curved homogeneous Finsler spaces (G/H,F ). With the assumption that the homogeneous space G/H is odd dimensional and the positively curved metric F is reversible, we only need to consider the most difficult case left, i.e. when the isotropy group H is regular in G. Applying the fixed point set technique and the homogeneous flag c...
متن کاملHomogeneous geodesics of non-unimodular Lorentzian Lie groups and naturally reductive Lorentzian spaces in dimension three
We determine, for all three-dimensional non-unimodular Lie groups equipped with a Lorentzian metric, the set of homogeneous geodesics through a point. Together with the results of [C] and [CM2], this leads to the full classification of three-dimensional Lorentzian g.o. spaces and naturally reductive spaces.
متن کاملMetric Entropy of Homogeneous Spaces and Finsler Geometry of Classical Lie Groups ∗ Stanislaw J . Szarek
For a (compact) subset K of a metric space and ε > 0, the covering number N(K, ε) is defined as the smallest number of balls of radius ε whose union covers K. Knowledge of the metric entropy, i.e., the asymptotic behaviour of covering numbers for (families of) metric spaces is important in many areas of mathematics (geometry, functional analysis, probability, coding theory, to name a few). In t...
متن کامل